EE 230

Lecture 2

Background Materials

Quiz 1

A typical electronic system is shown below. Give three different types of physical variables that one could encounter in such a system.

Quiz 1

A typical electronic system is shown below. Give three different types of physical variables that one could encounter in such a system.

Solution: Time, temperature, pressure, light level, sound pressure level, force,

Review from Last Time

Electronics business is one the largest sectors in the world economy

worldwide sales from semiconductors alone projected to be at the \$250 Billion level in 2006

Example of electronic system: Force Measurement with Foil Strain Gauges

Force Measurement with Foil Strain Gauges

Force Measurement with Foil Strain Gauges

 $\Delta L/L$ is often very small

If L=100ft, the thickness of the beam is 1 foot, and the deflection is 0.1ft, it can be shown that ΔL is approximately 4E-3 feet

Thus, $\Delta L/L$ is approximately 4E-5

 $\epsilon = \Delta L/L$ is defined to be the strain on the surface

Strain gauge characterization

$$GF = \frac{\Delta R}{\Delta L} = \frac{\Delta R}{\epsilon}$$

Typical GF for foil strain gauges are around 2

For the sample loaded beam

$$\frac{\Delta R}{R} = \epsilon \ GF \cong 9E - 5$$

Thus, if the unstrained resistor is R=30.000000 Ω , the strained resistor would be R_{ST}=30.0027 Ω

Bridge circuits that is widely used to measure the change in resistance

If R₁=R₂=R₃=30.0000 Ω and V_{IN}=5V, then V_{OUT}=112.5µV

Bridge circuits that is widely used to measure the change in resistance

If $R_1 = R_2 = R_3 = 30.0000\Omega$ and $V_{IN} = 5V$, then $V_{OUT} = 112.5\mu V$

- Often V_{OUT} must be accurately determined (0.01% or better)
- Resistor accuracy is really important
- Temperature or environment can be critically important
- Cost for force (weight) measurement systems can be high

Strain Gauges

Load Cells

Button-Style Compression Load Cells

Load Cells

Signal Processing

- Often includes a combination of digital and analog circuits
- May contain only digital circuits

Analog Signals

. Continuous time / Continuous Amplitude

· Discrete time / Discrete Amplitude

Digital Signals

- Often special case of DT/DA where only two amplitude levels Discrete Time Signals often Obtained By Sampling Continuous Time / Continuous Amplitude Signal.

Many continuous-time signals nearly periodic

$$\begin{array}{c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Theorem: If
$$f(t)$$
 is periodic with
period T, then $f(t)$ can be expressed
as $f(t) = \sum_{k=0}^{\infty} A_k \sin(k\omega t + \Theta_k)$

where $A_K \neq \Theta_K$ are constants and $\omega = \frac{2\pi}{T} = 2\pi f$

. This is termed the Fourier Series Representation

•
$$\langle A_{k}, \Theta_{k} \rangle_{k=0}^{\infty}$$
 termed frequency spectrum of $f(t)$

•
$$f(t) \leftarrow F(w)$$
 represent a transform pair

-

$$V_{sq}(t) = \frac{4V_x}{\Pi} \left(\sin \omega_0 t + \frac{1}{3} \sin 3\omega_0 t + \frac{1}{5} \sin 5\omega_0 t + \cdots \right)$$

$$V_{sq}(t) = \frac{4V_x}{\Pi} \sum_{\substack{k=1\\ k \neq d}}^{\infty} \frac{\sin (k \omega_0 t)}{k}$$
where $W_0 = \frac{2\Pi}{T}$

- Nonperiodic Signals Can Also Be Represented in the Frequency domain
- · Fourier Transform Used for this purpose
- · Discrete Time Signals Can Also Be Represented in the Frequency domain
- · Discrete Fourier Transform (DFT) used for this purpose

- · Often interested in knowing how sinusordal signals propagate through a circuit
- Often design circuits so that sinusoidal signals will propagate through the Circuit in a predetermined way
- This is the major reason a strong emphasis on analyzing circuits with sinusoidal excitations was made in EE201

Linoanity

- A circuit is linear if

 $V_{0}\left(a_{1}V_{1}+a_{2}V_{2}\right) = a_{1}V_{0}(v_{1}) + a_{2}V_{0}(v_{2})$ for all V_{1}, v_{2} and all a_{1}, a_{2}

- If a circuit is linear, the dc transfer characteristics is a straight line
- If the dc transfer characteristics are not a straight line, the circuit is not linear

Properties of Linear Networks

$$\frac{\overline{X_{i}(j\omega)}}{X_{i}(j\omega)} = T_{p}(j\omega)$$

$$\frac{\overline{X_{o}(j\omega)}}{\overline{X_{i}(j\omega)}} = T_{p}(j\omega)$$

$$T_{p}(j\omega) \text{ is called the phasor transfer function}$$

$$\frac{j(\arg(T(j\omega)))}{j(\arg(T(j\omega)))}$$

$$T_{p}(j\omega) = |T_{p}(j\omega)| e^{j\Theta} \qquad \Theta = \arg(T(j\omega))$$

ξ.

If a sinusoidal input is applied to a nonlinear system, harmonic components often appear in the output

If a sinusoidal input is applied to a system and harmonic components appear in the output, the system is nonlinear.

The introduction of harmonics by a nonlinear system introduces distortion and distortion (even small amounts) is very undesirable in many applications

Bell

- · Striking a boll results in a nearly sinusoiday waveform that sounds pleasurable
- If the sinusoidal output were altered in an amplifier or by a fault in the bell, the sound would usually be very objectionably